Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 844
Filter
1.
Front Pediatr ; 12: 1388921, 2024.
Article in English | MEDLINE | ID: mdl-38725987

ABSTRACT

Objectives: To develop a predictive model for patent ductus arteriosus (PDA) in preterm infants at seven days postpartum. The model employs ultrasound measurements of the ductus arteriosus (DA) intimal thickness (IT) obtained within 24 h after birth. Methods: One hundred and five preterm infants with gestational ages ranging from 27.0 to 36.7 weeks admitted within 24 h following birth were prospectively enrolled. Echocardiographic assessments were performed to measure DA IT within 24 h after birth, and DA status was evaluated through echocardiography on the seventh day postpartum. Potential predictors were considered, including traditional clinical risk factors, M-mode ultrasound parameters, lumen diameter of the DA (LD), and DA flow metrics. A final prediction model was formulated through bidirectional stepwise regression analysis and subsequently subjected to internal validation. The model's discriminative ability, calibration, and clinical applicability were also assessed. Results: The final predictive model included birth weight, application of mechanical ventilation, left ventricular end-diastolic diameter (LVEDd), LD, and the logarithm of IT (logIT). The receiver operating characteristic (ROC) curve for the model, predicated on logIT, exhibited excellent discriminative power with an area under the curve (AUC) of 0.985 (95% CI: 0.966-1.000), sensitivity of 1.000, and specificity of 0.909. Moreover, the model demonstrated robust calibration and goodness-of-fit (χ2 value = 0.560, p > 0.05), as well as strong reproducibility (accuracy: 0.935, Kappa: 0.773), as evidenced by 10-fold cross-validation. A decision curve analysis confirmed the model's broad clinical utility. Conclusions: Our study successfully establishes a predictive model for PDA in preterm infants at seven days postpartum, leveraging the measurement of DA IT. This model enables identifying, within the first 24 h of life, infants who are likely to benefit from timely DA closure, thereby informing treatment decisions.

2.
Nano Lett ; 24(19): 5831-5837, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708822

ABSTRACT

Single lanthanide (Ln) ion doped upconversion nanoparticles (UCNPs) exhibit great potential for biomolecule sensing and counting. Plasmonic structures can improve the emission efficiency of single UCNPs by modulating the energy transferring process. Yet, achieving robust and large-area single UCNP emission modulation remains a challenge, which obstructs investigation and application of single UCNPs. Here, we present a strategy using metal nanohole arrays (NHAs) to achieve energy-transfer modulation on single UCNPs simultaneously within large-area plasmonic structures. By coupling surface plasmon polaritons (SPPs) with higher-intermediate state (1D2 → 3F3, 1D2 → 3H4) transitions, we achieved a remarkable up to 10-fold enhancement in 800 nm emission, surpassing the conventional approach of coupling SPPs with an intermediate ground state (3H4 → 3H6). We numerically simulate the electrical field distribution and reveal that luminescent enhancement is robust and insensitive to the exact location of particles. It is anticipated that the strategy provides a platform for widely exploring applications in single-particle quantitative biosensing.

3.
Exp Gerontol ; 192: 112443, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38697556

ABSTRACT

OBJECTIVE: Ferroptosis has been recognized as being closely associated with cognitive impairment. Research has established that Alzheimer's disease (AD)-associated proteins, such as amyloid precursor protein (APP) and phosphorylated tau, are involved in brain iron metabolism. These proteins are found in high concentrations within senile plaques and neurofibrillary tangles. Repetitive transcranial magnetic stimulation (rTMS) offers a non-pharmacological approach to AD treatment. This study aims to explore the potential therapeutic effects of rTMS on cognitive impairment through the modulation of the ferroptosis pathway, thereby laying both a theoretical and experimental groundwork for the application of rTMS in treating Alzheimer's disease. METHODS: The study utilized senescence-accelerated mouse prone 8 (SAMP8) mice to model brain aging-related cognitive impairment, with senescence-accelerated-mouse resistant 1 (SAMR1) mice acting as controls. The SAMP8 mice were subjected to high-frequency rTMS at 25 Hz for durations of 14 and 28 days. Cognitive function was evaluated using behavioral tests. Resting-state functional magnetic resonance imaging (rs-fMRI) assessed alterations in cerebral activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygen level-dependent signal. Neuronal recovery post-rTMS in the SAMP8 model was examined via HE and Nissl staining. Immunohistochemistry was employed to detect the expression of APP and Phospho-Tau (Thr231). Oxidative stress markers were quantified using biochemical assay kits. ELISA methods were utilized to measure hippocampal levels of Fe2+ and Aß1-42. Finally, the expression of proteins related to the ferroptosis pathway was determined through western blot analysis. RESULTS: The findings indicate that 25 Hz rTMS enhances cognitive function and augments cerebral activity in SAMP8 model mice. Treatment with rTMS in these mice resulted in diminished oxidative stress and safeguarded neurons against damage. Additionally, iron accumulation was mitigated, and the expression of ferroptosis pathway proteins Gpx4, system Xc-, and Nrf2 was elevated. CONCLUSIONS: The Tau/APP-Fe-GPX4/system Xc-/Nrf2 pathway is implicated in the remedial effects of rTMS on cognitive dysfunction, offering a theoretical and experimental basis for employing rTMS in AD treatment.

4.
BMC Cardiovasc Disord ; 24(1): 216, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643093

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) in patients with acute myocardial infarction (AMI) often indicates a poor prognosis. OBJECTIVE: This study aimed to investigate the association between the TyG index and the risk of AKI in patients with AMI. METHODS: Data were taken from the Medical Information Mart for Intensive Care (MIMIC) database. A 1:3 propensity score (PS) was set to match patients in the AKI and non-AKI groups. Multivariate logistic regression analysis, restricted cubic spline (RCS) regression and subgroup analysis were performed to assess the association between TyG index and AKI. RESULTS: Totally, 1831 AMI patients were included, of which 302 (15.6%) had AKI. The TyG level was higher in AKI patients than in non-AKI patients (9.30 ± 0.71 mg/mL vs. 9.03 ± 0.73 mg/mL, P < 0.001). Compared to the lowest quartile of TyG levels, quartiles 3 or 4 had a higher risk of AKI, respectively (Odds Ratiomodel 4 = 2.139, 95% Confidence Interval: 1.382-3.310, for quartile 4 vs. quartile 1, Ptrend < 0.001). The risk of AKI increased by 34.4% when the TyG level increased by 1 S.D. (OR: 1.344, 95% CI: 1.150-1.570, P < 0.001). The TyG level was non-linearly associated with the risk of AKI in the population within a specified range. After 1:3 propensity score matching, the results were similar and the TyG level remained a risk factor for AKI in patients with AMI. CONCLUSION: High levels of TyG increase the risk of AKI in AMI patients. The TyG level is a predictor of AKI risk in AMI patients, and can be used for clinical management.


Subject(s)
Acute Kidney Injury , Myocardial Infarction , Humans , Propensity Score , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Glucose , Myocardial Infarction/complications , Myocardial Infarction/diagnosis , Risk Factors , Triglycerides , Blood Glucose
5.
Int J Nanomedicine ; 19: 3295-3314, 2024.
Article in English | MEDLINE | ID: mdl-38606373

ABSTRACT

Background: Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods: H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results: GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion: GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.


Subject(s)
Exosomes , Growth Differentiation Factor 15 , Myocardial Infarction , Animals , Rats , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Apoptosis , Exosomes/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardial Infarction/pathology , Myocytes, Cardiac , RNA, Messenger/metabolism
6.
Curr Eye Res ; : 1-8, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616539

ABSTRACT

PURPOSE: This study aims to elucidate the longitudinal refractive and ocular biometric alterations in preschool children with high hyperopia who underwent early interventions. METHODS: We conducted a retrospective analysis of preschool children diagnosed with high hyperopia at Tianjin Medical University Eye Hospital between 2011 and 2023. Inclusion criteria required an initial examination with cycloplegic refraction, bilateral spherical equivalent power (SE) ≥ +5.00D with a difference <1.00D, a minimum two-year follow-up, and at least three ocular biometric measurements. The annual axial growth rate evaluated emmetropization in highly hyperopic children. We applied Restricted Cubic Spline (RCS) models to explore potential nonlinear relationships between age and spherical equivalent, axial length, corneal curvature, and axial length-to-corneal curvature ratio. Additionally, Mixed-effects models were employed to investigate factors associated with changes in refractive error and axial length. RESULTS: The study enrolled 60 eligible subjects, with a median initial diagnosis age of 3.5 years (IQR, 2.8-4.9 years) and a median last visit age of 9.3 years (IQR, 8.1-10.8 years). The average follow-up duration was 5.7 years. RCS analysis revealed notable nonlinear changes in spherical equivalent power, axial length, and axial length-to-corneal curvature ratio, although corneal curvature displayed no statistically significant nonlinear trend. Factors affecting SE changes included the presence of strabismus, the use of cycloplegia, baseline SE, and age. Conversely, changes in axial length solely correlated with baseline axial length and age. CONCLUSION: Highly hyperopic preschool children undergoing early intervention display a marked emmetropization tendency, though most still remain moderately to highly hyperopic, with the progression of refractive changes showing non-uniform patterns with respect to age.

7.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Article in English | MEDLINE | ID: mdl-38559696

ABSTRACT

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Subject(s)
Hippophae , Morus , Rats , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Hippophae/metabolism , Morus/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Adipose Tissue, White/metabolism , Signal Transduction , Weight Loss
8.
Circulation ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557060

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease without effective pharmacological approaches. The nuclear hormone receptor LXRα (liver X receptor α), encoded by the NR1H3 gene, serves as a critical transcriptional mediator linked to several vascular pathologies, but its role in AAA remains elusive. METHODS: Through integrated analyses of human and murine AAA gene expression microarray data sets, we identified NR1H3 as a candidate gene regulating AAA formation. To investigate the role of LXRα in AAA formation, we used global Nr1h3-knockout and vascular smooth muscle cell-specific Nr1h3-knockout mice in 2 AAA mouse models induced with angiotensin II (1000 ng·kg·min; 28 days) or calcium chloride (CaCl2; 0.5 mol/L; 42 days). RESULTS: Upregulated LXRα was observed in the aortas of patients with AAA and in angiotensin II- or CaCl2-treated mice. Global or vascular smooth muscle cell-specific Nr1h3 knockout inhibited AAA formation in 2 mouse models. Loss of LXRα function prevented extracellular matrix degeneration, inflammation, and vascular smooth muscle cell phenotypic switching. Uhrf1, an epigenetic master regulator, was identified as a direct target gene of LXRα by integrated analysis of transcriptome sequencing and chromatin immunoprecipitation sequencing. Susceptibility to AAA development was consistently enhanced by UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) in both angiotensin II- and CaCl2-induced mouse models. We then determined the CpG methylation status and promoter accessibility of UHRF1-mediated genes using CUT&Tag (cleavage under targets and tagmentation), RRBS (reduced representation bisulfite sequencing), and ATAC-seq (assay for transposase-accessible chromatin with sequencing) in vascular smooth muscle cells, which revealed that the recruitment of UHRF1 to the promoter of miR-26b led to DNA hypermethylation accompanied by relatively closed chromatin states, and caused downregulation of miR-26b expression in AAA. Regarding clinical significance, we found that underexpression of miR-26b-3p correlated with high risk in patients with AAA. Maintaining miR-26b-3p expression prevented AAA progression and alleviated the overall pathological process. CONCLUSIONS: Our study reveals a pivotal role of the LXRα/UHRF1/miR-26b-3p axis in AAA and provides potential biomarkers and therapeutic targets for AAA.

9.
Int J Cardiol ; : 132102, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38685457

ABSTRACT

GOAL: Kawasaki disease (KD) patients are at risk of developing the serious complication of coronary artery dilation (CAD). To diagnose CAD caused by KD, various Z-Score formulas are used worldwide. This paper aims to evaluate the differences and inclusiveness among the six most commonly used Z-Score formulas in diagnosing CAD in Suzhou, China. Additionally, the study seeks to compare the differences in CAD diagnosis among different high-risk factor groups. By doing so, this research provides a valuable reference for accurately diagnosing CAD in KD patients. METHOD: This paper presents a retrospective analysis of 1509 patients diagnosed with KD at the Children's Hospital of Soochow University between January 2018 and December 2020. We collected the patients' clinical and echocardiographic data and used six Z-Score formulas (Kobayashi et al., de Zorzi et al., Kurotobi et al., McCrindle et al., Olivieri et al., and Dallaire et al.) to diagnose the degree of CAD in different segments. We then compared the diagnostic differences and inclusiveness of these formulas, especially the diagnostic differences in medium to giant CAA. To achieve this, we divided the patients into groups based on their age (≤12 months, 13-30 months, and > 30 months) and fever duration (≤5 days, 6-7 days, 8-9 days, and ≥ 10 days). Using the McNemar test and the Kappa test, we compared the differences and the consistencies of CDA diagnosis among the six Z-Score formulas. Moreover, we used the Friedman test and Chi-square segmentation formula to compare the differences in age and number of fever duration between groups and to compare each Z-Score formula pair within the group. RESULTS: Except for the LMCA segment, where there were no statistically significant differences between de Zorzi formula and McCrindle formula, the Z-score formulas showed statistically significant differences in the degree of CAD diagnosis across all other segments. Inclusiveness assessment revealed that Kobayashi formula and Dallaire formula showed significantly higher rates of dilatation (6.58% and 5.32%), or of small aneurysms (6.52% and 4.52%) compared to other formulas (1.0%-1.73%). Medium aneurysms were also more likely to be identified with Kobayashi and Dallaire formulas (0.8% and 0.8%) compared to the remaining formulas (0.13-0.40%). There are significant differences in the diagnoses of medium to giant CAA made by these six formulas in LAD and RCA. The longer the duration of fever and the younger the age, the higher the diagnosis rates of CAD and CAA. There were no statistically significant differences between de Zorzi formula and McCrindle formula, de Zorzi formula and Oliveri formula, and Kurotobi formula and Dallaire formula within the four groups based on the duration of fever. Similarly, there were no statistically significant differences between Kobayashi formula and Dallaire formula, and between de Zorzi formula and Oliveri formula in the age groups of ≤12 months and 13-30 months. CONCLUSION: There are diagnostic differences among these six Z-score formulas, considering the aforementioned statistics. Kobayashi formula and Dallaire formula are more inclusive, and less likely to under-diagnose significant CAD. They perform evenly for dilatation only, for small aneurysms and the median size aneurysms, and that is for segments of LMCA, LAD and RCA. In addition, McCrindle formula joins the "inclusive" pack for LAD and RCA in the matter of CAD. The younger the age of the patients and the longer the duration of fever, the higher the diagnosis rates of CAD and CAA. Furthermore, the younger the age of the patients and the shorter the duration of fever, the greater the differences between the various formulas.

10.
Trop Anim Health Prod ; 56(4): 138, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649543

ABSTRACT

Rectal temperature is widely used as an indicator of animal health. However, rectal temperature is conventionally measured by an invasive method, which may reduce animal welfare. So, this study aimed to determine the relationships between the deep-body (core) temperature and body surface temperatures in goats and develop a linear regression equation to establish the core temperature based on body surface temperatures. Body surface temperatures (head, eye, muzzle, horn, back, scrotum and groin) of goats were measured by infrared thermography (IRT). Ambient temperatures were measured by digital thermometer. Core temperatures were measured by a digital vet thermometer. Pearson correlation analysis was used to analyze the relationship between body surface temperatures, ambient temperature, and core temperature. Simple linear regression analysis was used to develop core temperature assessment equations. Correlation analysis showed that groin temperature was highly correlated with core temperature, and low correlated with ambient temperature. The body surface temperature of other region was low correlated with core temperature, and highly correlated with ambient temperature. Regression analysis showed that the determination coefficient of core temperature assessment equation based on groin temperature was the highest (P < 0.0001, R2 = 0.55), and those based on surface temperature of other regions were low (P < 0.01, R2 ≤ 0.16). We concluded that body surface temperatures obtained by IRT could be used for the assessment of goat core temperature. The core temperature assessment equations developed by the temperature of the body surface, which is less affected by ambient temperature, was found to have a higher determination coefficient than the equations developed using body surface temperature that is more affected by ambient temperature.


Subject(s)
Body Temperature , Goats , Thermography , Animals , Goats/physiology , Thermography/veterinary , Thermography/methods , Male , Infrared Rays , Female , Linear Models
11.
Brain Behav Immun ; 119: 767-780, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677625

ABSTRACT

The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.

12.
Clin Interv Aging ; 19: 503-515, 2024.
Article in English | MEDLINE | ID: mdl-38525316

ABSTRACT

Objective: This study aimed to explore the association of preoperative neutrophil percentage (NEUT%) with the risk of acute kidney injury (AKI) in patients with acute myocardial infarction (AMI) having undergone coronary interventional therapy. Methods: A single-center, retrospective and observational study was conducted. From December 2012 to June 2021, patients with AMI were enrolled and divided into AKI group and non-AKI group. The NEUT% in the two groups was compared. The association between NEUT% with the risk of post-AMI AKI was analyzed by univariate and multivariable logistic regression. Kaplan-Meier survival curve was drawn to evaluate the prognostic ability of NEUT% for short-term all-cause death following AMI. Results: A total of 3001 consecutive patients were enrolled with an average age of 64.38 years. AKI occurred in 327 (10.9%) patients. The NEUT% was higher in the AKI group than in the non-AKI group ([76.65±11.43]% versus [73.22±11.83]%, P<0.001). NEUT% was also identified as an independent risk factor for AKI in AMI patients after adjustment (OR=1.021, 95% CI: 1.010-1.033, P < 0.001). Compared with those at the lowest quartile of NEUT%, the patients at quartiles 2-4 had a higher risk of AKI (P for trend = 0.003). The odds of AKI increased by 29.0% as NEUT% increased by 1 standard deviation (OR=1.290, 95% CI: 1.087-1.531, P = 0.004). After a median of 35 days follow-up, 93 patients died. Patients with a higher NEUT% presented a higher risk of all-cause death after AMI (Log rank: χ2 =24.753, P<0.001). Conclusion: In AMI patients, the peripheral blood NEUT% was positively associated with the odds of AKI and short-term all-cause mortality. NEUT% may provide physicians with more information about disease development and prognosis.


Subject(s)
Acute Kidney Injury , Myocardial Infarction , Humans , Aged , Neutrophils , Retrospective Studies , Prognosis , Myocardial Infarction/complications , Biomarkers , Risk Factors , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology
13.
IBRO Neurosci Rep ; 16: 436-442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38510074

ABSTRACT

Parkinson's Disease (PD) and Drug-induced parkinsonism (DIP) are the most common subtypes of parkinsonism, yet no studies have reported that the subcortical volume alterations in DIP patients. This study aimed to identify specific alterations of subcortical structures volume in DIP patients, and investigate association between the subcortical structure modifications and clinical symptoms. We recruited 27 PD patients, 25 DIP patients and 30 healthy controls (HCs). The clinical symptom-related parameters (Unified Parkinson's Disease Rating Scale, UPDRS) were evaluated. Structural imaging was performed on a 3.0 T scanner, and volumes of subcortical structures were obtained using FreeSurfer software. Analysis of covariance (ANCOVA) and partial correlation analysis were performed. DIP group had significantly smaller volume of the thalamus, pallidum, hippocampus and amygdala compared to HCs. ROC curve analysis demonstrated that the highest area under curve (AUC) value was in the right pallidum (AUC = 0.831) for evaluating the diagnostic efficacy in DIP from HCs. Moreover, the volumes of the putamen, hippocampus and amygdala were negatively correlated with UPDRSII in the DIP patients. The volume of the amygdala was negatively correlated with UPDRSIII. The present study provides novel information regarding neuroanatomical alteration of subcortical nuclei in DIP patients, suggesting that these methods might provide the basis for early diagnosis and differential diagnosis of DIP.

14.
Chin J Integr Med ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532153

ABSTRACT

OBJECTIVE: To establish the dynamic treatment strategy of Chinese medicine (CM) for metastatic colorectal cancer (mCRC) by machine learning algorithm, in order to provide a reference for the selection of CM treatment strategies for mCRC. METHODS: From the outpatient cases of mCRC in the Department of Oncology at Xiyuan Hospital, China Academy of Chinese Medical Sciences, 197 cases that met the inclusion criteria were screened. According to different CM intervention strategies, the patients were divided into 3 groups: CM treatment alone, equal emphasis on Chinese and Western medicine treatment (CM combined with local treatment of tumors, oral chemotherapy, or targeted drugs), and CM assisted Western medicine treatment (CM combined with intravenous regimen of Western medicine). The survival time of patients undergoing CM intervention was taken as the final evaluation index. Factors affecting the choice of CM intervention scheme were screened as decision variables. The dynamic CM intervention and treatment strategy for mCRC was explored based on the cost-sensitive classification learning algorithm for survival (CSCLSurv). Patients' survival was estimated using the Kaplan-Meier method, and the survival time of patients who received the model-recommended treatment plan were compared with those who received actual treatment plan. RESULTS: Using the survival time of patients undergoing CM intervention as the evaluation index, a dynamic CM intervention therapy strategy for mCRC was established based on CSCLSurv. Different CM intervention strategies for mCRC can be selected according to dynamic decision variables, such as gender, age, Eastern Cooperative Oncology Group score, tumor site, metastatic site, genotyping, and the stage of Western medicine treatment at the patient's first visit. The median survival time of patients who received the model-recommended treatment plan was 35 months, while those who receive the actual treatment plan was 26.0 months (P=0.06). CONCLUSIONS: The dynamic treatment strategy of CM, based on CSCLSurv for mCRC, plays a certain role in providing clinical hints in CM. It can be further improved in future prospective studies with larger sample sizes.

15.
Clin Epigenetics ; 16(1): 42, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491513

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) is a prevalent congenital cardiac malformation, which lacks effective early biological diagnosis and intervention. MicroRNAs, as epigenetic regulators of cardiac development, provide potential biomarkers for the diagnosis and treatment of CHD. However, the mechanisms underlying miRNAs-mediated regulation of cardiac development and CHD malformation remain to be further elucidated. This study aimed to explore the function of microRNA-20b-5p (miR-20b-5p) in cardiac development and CHD pathogenesis. METHODS AND RESULTS: miRNA expression profiling identified that miR-20b-5p was significantly downregulated during a 12-day cardiac differentiation of human embryonic stem cells (hESCs), whereas it was markedly upregulated in plasma samples of atrial septal defect (ASD) patients. Our results further revealed that miR-20b-5p suppressed hESCs-derived cardiac differentiation by targeting tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine, leading to a reduction in key cardiac transcription factors including GATA4, NKX2.5, TBX5, MYH6 and cTnT. Additionally, knockdown of TET2 significantly inhibited cardiac differentiation, which could be partially restored by miR-20b-5p inhibition. CONCLUSIONS: Collectively, this study provides compelling evidence that miR-20b-5p functions as an inhibitory regulator in hESCs-derived cardiac differentiation by targeting TET2, highlighting its potential as a biomarker for ASD.


Subject(s)
Dioxygenases , MicroRNAs , Humans , Cell Differentiation , Dioxygenases/genetics , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Clin Exp Med ; 24(1): 57, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546813

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. The current risk stratification system is essential but remains insufficient to select the best schedules. Cysteine-rich protein 1 (CSRP1) is a member of the CSRP family and associated with poor clinicopathological features in many tumors. This study aimed to explore the clinical significance and molecular mechanisms of cysteine- and glycine-rich protein 1 (CSRP1) in AML. RT-qPCR was used to detect the relative expression of CSRP1 in our clinical cohort. Functional enrichment analysis of CSRP1-related differentially expressed genes was carried out by GO/KEGG enrichment analysis, immune cell infiltration analysis, and protein-protein interaction (PPI) network. The OncoPredict algorithm was implemented to explore correlations between CSRP1 and drug resistance. CSRP1 was highly expressed in AML compared with normal samples. High CSRP1 expression was an independent poor prognostic factor. Functional enrichment analysis showed neutrophil activation and apoptosis were associated with CSRP1. In the PPI network, 19 genes were present in the most significant module, and 9 of them were correlated with AML prognosis. The high CSRP1 patients showed higher sensitivity to 5-fluorouracil, gemcitabine, rapamycin, cisplatin and lower sensitivity to fludarabine. CSRP1 may serve as a potential prognostic marker and a therapeutic target for AML in the future.


Subject(s)
Cysteine , Leukemia, Myeloid, Acute , Humans , Cysteine/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Prognosis , Gene Expression Profiling , Glycine/genetics
17.
J Med Genet ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443156

ABSTRACT

BACKGROUND: Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS: Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS: We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION: We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.

18.
Transl Pediatr ; 13(2): 271-287, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38455756

ABSTRACT

Background: Kawasaki disease (KD) often complicates coronary artery lesions (CALs). Despite the established significance of STAT3 signaling during the acute phase of KD and signal transducer and activator of transcription 3 (STAT3) signaling being closely related to CALs, it remains unknown whether and how STAT3 was regulated by ubiquitination during KD pathogenesis. Methods: Bioinformatics and immunoprecipitation assays were conducted, and an E3 ligase, murine double minute 2 (MDM2) was identified as the ubiquitin ligase of STAT3. The blood samples from KD patients before and after intravenous immunoglobulin (IVIG) treatment were utilized to analyze the expression level of MDM2. Human coronary artery endothelial cells (HCAECs) and a mouse model were used to study the mechanisms of MDM2-STAT3 signaling during KD pathogenesis. Results: The MDM2 expression level decreased while the STAT3 level and vascular endothelial growth factor A (VEGFA) level increased in KD patients with CALs and the KD mouse model. Mechanistically, MDM2 colocalized with STAT3 in HCAECs and the coronary vessels of the KD mouse model. Knocking down MDM2 caused an increased level of STAT3 protein in HCAECs, whereas MDM2 overexpression upregulated the ubiquitination level of STAT3 protein, hence leading to significantly decreased turnover of STAT3 and VEGFA. Conclusions: MDM2 functions as a negative regulator of STAT3 signaling by promoting its ubiquitination during KD pathogenesis, thus providing a potential intervention target for KD therapy.

19.
Curr Hypertens Rep ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460066

ABSTRACT

PURPOSE OF REVIEW: The effect of continuous positive airway pressure (CPAP) on resistant hypertension in patients at high risk with obstructive sleep apnea (OSA) needs further investigation. We aimed to determine the effect of CPAP on blood pressure in patients with resistant hypertension and OSA. Databases including PubMed, EMBASE, MEDLINE, the Cochrane Library, and CMB were searched. Data were pooled using a random-effects or fixed-effects model to derive weighted mean differences (WMDs) and 95% confidence intervals (CIs). RECENT FINDINGS: A total of 12 trials and 718 participants were included. Compared with control, CPAP significantly reduced 24-h systolic blood pressure (SBP) (WMD: - 5.92 mmHg [ - 8.72, - 3.11]; P<0.001), 24-h diastolic blood pressure (DBP) (WMD: - 4.44 mmHg [- 6.26 , - 2.62]; P <0.001),  daytime SBP (WMD: - 5.76 mmHg [ - 9.16, - 2.36]; P <0.001),  daytime DBP (WMD: - 3.92 mmHg [- 5.55, - 2.30];  nighttime SBP (WMD: - 4.87 mmHg [ - 7.96 , - 1.78]; P = 0.002), and nighttime DBP (WMD: - 2.05 mmHg [- 2.99, - 1.11]; P<0.001) in patients with resistant hypertension and OSA. CPAP improved the blood pressure both in the short (<3 months) and long term (≥ 3 months). No significant impact on mean heart rate was noted (WMD: -2.76 beats per min [- 7.50, 1.97]; P = 0.25). CPAP treatment was associated with BP reduction in patients with resistant hypertension and OSA.

20.
Andrology ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465706

ABSTRACT

BACKGROUND: Carriers of reciprocal translocations often have more unbalanced spermatozoa and higher DNA fragmentation rates, elevating reproductive risk. The simple swim-up method (SSUM) can decrease the amount of spermatozoa with abnormal chromatin structure and fragmented DNA, however, it has limited efficacy in eliminating chromosomally unbalanced sperm. METHODS: The spermatozoa of eight Robertsonian translocation (Rob) carriers were split into three groups: original raw semen group (control group); SSUM and swimming trapper method group (STM) processed semen samples. After different semen preparation procedures, semen qualities, sperm chromosomal aneuploidy, and sperm fragmented DNA were evaluated. RESULTS: Although spermatozoa with higher motility was obtained by both SSUM and STM, the population of faster forward moving sperm was greater with STM as compared to SSUM. While the rates of DNA fragmentation were statistically much lower in both groups than ejaculated semen sample, our data showed better effect on the decrease of DNA fragmentation index (DFI) after selection by STM for patients who have high DFI (>20%) in neat semen. For all patients, significant decrease in the frequency of chromosomally unbalanced spermatozoa was observed after selection using STM. Although similar trends can be seen in the SSUM group, a significant difference was identified in one patient only. CONCLUSIONS: Use of swimming trapper (STM) is superior for enriching high-motile and genetically competent sperm in comparison with SSUM.

SELECTION OF CITATIONS
SEARCH DETAIL
...